Soot superaggregates from flaming wildfires and their direct radiative forcing

نویسندگان

  • Rajan K. Chakrabarty
  • Nicholas D. Beres
  • Hans Moosmüller
  • Swarup China
  • Claudio Mazzoleni
  • Manvendra K. Dubey
  • Li Liu
  • Michael I. Mishchenko
چکیده

Wildfires contribute significantly to global soot emissions, yet their aerosol formation mechanisms and resulting particle properties are poorly understood and parameterized in climate models. The conventional view holds that soot is formed via the cluster-dilute aggregation mechanism in wildfires and emitted as aggregates with fractal dimension Df ≈ 1.8 mobility diameter Dm ≤ 1 μm, and aerodynamic diameter Da ≤ 300 nm. Here we report the ubiquitous presence of soot superaggregates (SAs) in the outflow from a major wildfire in India. SAs are porous, low-density aggregates of cluster-dilute aggregates with characteristic Df ≈ 2.6, Dm > 1 μm, and Da ≤ 300 nm that form via the cluster-dense aggregation mechanism. We present additional observations of soot SAs in wildfire smoke-laden air masses over Northern California, New Mexico, and Mexico City. At 550 nm wavelength, [corrected] we estimate that SAs contribute, per unit optical depth, up to 35% less atmospheric warming than freshly-emitted (D(f) ≈ 1.8) [corrected] aggregates, and ≈90% more warming than the volume-equivalent spherical soot particles simulated in climate models.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Corrigendum: Soot superaggregates from flaming wildfires and their direct radiative forcing.

The original version of this Article contained an error in the Abstract. " We estimate that SAs contribute, per unit optical depth, up to 35% less atmospheric warming than freshly-emitted (D f ≈ 1.8) aggregates, and ≈90% more warming than the volume-equivalent spherical soot particles simulated in climate models. " now reads: " At 550 nm wavelength, we estimate that SAs contribute, per unit opt...

متن کامل

Black carbon radiative forcing at TOA decreased during aging

During aging processing, black carbon (also called soot) particles may tend to be mixed with other aerosols, and highly influence their radiative forcing. In this study, freshly emitted soot particles were simulated as fractal aggregates composed of small spherical primary monomers. After aging in the atmosphere, soot monomers were coated by a thinly layer of sulfate as thinly coated soot parti...

متن کامل

Effect of clouds on direct aerosol radiative forcing of climate

The effect of a cloud layer on top-of-atmosphere (TOA) aerosol radiative forcing is examined by means of a one-dimensional vertical column simulation. To span the range between nonabsorbing and strongly absorbing particles, (NH4)2SO4 and soot aerosols are considered individually and in internal and external mixtures. For a cloud layer embedded within an aerosol layer it is shown that direct aer...

متن کامل

In-situ measurements of the mixing state and optical properties of soot with implications for radiative forcing estimates.

Our ability to predict how global temperatures will change in the future is currently limited by the large uncertainties associated with aerosols. Soot aerosols represent a major research focus as they influence climate by absorbing incoming solar radiation resulting in a highly uncertain warming effect. The uncertainty stems from the fact that the actual amount soot warms our atmosphere strong...

متن کامل

Mechanism of SOA formation determines magnitude of radiative effects

Secondary organic aerosol (SOA) nearly always exists as an internal mixture, and the distribution of this mixture depends on the formation mechanism of SOA. A model is developed to examine the influence of using an internal mixing state based on the mechanism of formation and to estimate the radiative forcing of SOA in the future. For the present day, 66% of SOA is internally mixed with sulfate...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 4  شماره 

صفحات  -

تاریخ انتشار 2014